
ICS-271:Notes 5: 1

Set 5: Constraint Satisfaction Problems

Chapter 6 R&N

ICS 271 Fall 2016

Kalev Kask

ICS-271:Notes 5: 2

Outline

• The constraint network model

– Variables, domains, constraints, constraint graph, solutions

• Examples:

– graph-coloring, 8-queen, cryptarithmetic, crossword puzzles, vision

problems,scheduling, design

• The search space and naive backtracking,

• The constraint graph

• Consistency enforcing algorithms

– arc-consistency, AC-1,AC-3

• Backtracking strategies

– Forward-checking, dynamic variable orderings

• Special case: solving tree problems

• Local search for CSPs

ICS-271:Notes 5: 3

ICS-271:Notes 5: 4

A B
red green

red yellow

green red

green yellow

yellow green

yellow red

Constraint Satisfaction

Example: map coloring

Variables - countries (A,B,C,etc.)

Values - colors (e.g., red, green, yellow)

Constraints: e tc . ,ED D , AB ,A 

C

A

B

D

E

F

G

ICS-271:Notes 5: 5

ICS-271:Notes 5: 6

ICS-271:Notes 5: 7

ICS-271:Notes 5: 8

ICS-271:Notes 5: 9

Varieties of constraints

• Unary constraints involve a single variable,

– e.g., SA ≠ green

• Binary constraints involve pairs of variables,

– e.g., SA ≠ WA

• Higher-order constraints involve 3 or more variables,

– Clauses in boolean (propositional) logic

– e.g., cryptoarithmetic column constraints

ICS-271:Notes 5: 10

Hard vs Soft Constraints

• Hard constraints : must be satisfied

– Satisfaction problem

• Soft constraints : capture preferences

– Optimization problem

ICS-271:Notes 5: 11

Sudoku

Each row, column and major block must be all different

“Well posed” if it has unique solution: 27 constraints

ICS-271:Notes 5: 12

Sudoku

Each row, column and major block must be all different

“Well posed” if it has unique solution: 27 constraints

2 3
4 62

Constraint
propagation

•Variables: 81 slots

•Domains =
{1,2,3,4,5,6,7,8,9}

•Constraints:
•27 not-equal

ICS-271:Notes 5: 13

ICS-271:Notes 5: 15

ICS-271:Notes 5: 16

A network of constraints

• Variables

–

• Domains

– of discrete values:

• Binary constraints:

– Rij which represent the list of allowed pairs of values, Rij is a subset

of the Cartesian product: .

• Constraint graph:

– A node for each variable and an edge for each constraint

• Solution:

– An assignment of a value from its domain to each variable such that

no constraint is violated.

• A network of constraints represents the relation of all solutions.

n,....,XX1

n,....,DD1

ji xDD

},,),(|){(1 jjiiijjin DxDxRxx,....,xxsol 

1X

5X

4X
3X

2X

ICS-271:Notes 5: 17

Example : The 4-queen problem

Q

Q
Q

Q Q
Q

Q
Q

Place 4 Queens on a chess board of

4x4 such that no two queens reside in

the same row, column or diagonal.

Standard CSP formulation of the problem:

• Variables: each row is a variable.

Q
Q

Q
Q

1X

4X

3X

2X

1 2 3 4

• Domains: }.4,3,2,1{iD

• Constraints: There are = 6 constraints involved:
4
2()

)}2,4)(1,4)(1,3)(4,2)(4,1)(3,1{(12 R

)}3,4)(1,4)(4,3)(2,3)(3,2)(1,2)(4,1)(2,1{(13 R

)}3,4)(2,4)(4,3)(2,3)(1,3)(4,2)(3,2)(1,2)(3,1)(2,1{(14 R

)}2,4)(1,4)(1,3)(4,2)(4,1)(3,1{(23 R

)}3,4)(1,4)(4,3)(2,3)(3,2)(1,2)(4,1)(2,1{(24 R

)}2,4)(1,4)(1,3)(4,2)(4,1)(3,1{(34 R

• Constraint Graph :

1X

2X
4X

3X

ICS-271:Notes 5: 19

Class scheduling/Timetabling

ICS-271:Notes 5: 20

Search vs. Inference

• Search :

– In the space of partial variable-value assignments

– Key idea : conditioning

• Inference :

– Derive new information implied by values/constraints

– Key idea : local consistency

ICS-271:Notes 5: 21

But only dn unique assignments

ICS-271:Notes 5: 22

ICS-271:Notes 5: 23

The search space

• Definition: given an ordering of the variables

– a state:

• is an assignment to a subset of variables that is consistent.

– Operators:

• add an assignment to the next variable that does not violate any

constraint. How to choose next variable?

– Goal state:

• a consistent assignment to all the variables.

n,....,XX1

ICS-271:Notes 5: 24

ICS-271:Notes 5: 25

ICS-271:Notes 5: 26

ICS-271:Notes 5: 27

ICS-271:Notes 5: 28

Backtracking

• Complexity of extending a partial solution:

– Complexity of consistent: O(e log t), t bounds #tuples, e bounds #constraints

– Complexity of selectvalue: O(e k log t), k bounds domain size

ICS-271:Notes 5: 30

The effect of variable ordering

z divides x, y and t

ICS-271:Notes 5: 31

A coloring problem

ICS-271:Notes 5: 32

Backtracking Search for a Solution

ICS-271:Notes 5: 33

Backtracking Search for a Solution

ICS-271:Notes 5: 34

Backtracking Search for All Solutions

ICS-271:Notes 5: 35

Summary so far

• Constraint Satisfaction Problems

– variables, domains, constraints

– solution = assignment to all variables such that all constraints are satisfied

– constraint graph

• Search vs Inference:

– conditioning vs local consistency.

• Search

– Backtracking search :

• In the space of partial assignments;

• add consistent var=value assignment at each search space node.

• If not possible, backtrack

– Effect on search space size on var/val order :

• Variable order – most constrained variable first

• Value order – least constraining value first

ICS-271:Notes 5: 36

The Minimal network:

Example: the 4-queen problem

ICS-271:Notes 5: 37

Inference (Approximation) algorithms

• Arc-consistency (Waltz, 1972)

• Path-consistency (Montanari 1974, Mackworth 1977)

• k-consistency (Freuder 1982)

• Key Idea :

– Transform the network into smaller and smaller (but equivalent)

networks by tightening the domains/constraints.

ICS-271:Notes 5: 38

Arc-consistency

32,1,

32,1, 32,1,

1  X, Y, Z, T  3

X  Y

Y = Z

T  Z

X  T

X Y

T Z

32,1,


=





ICS-271:Notes 5: 39

1  X, Y, Z, T  3

X  Y

Y = Z

T  Z

X  T

X Y

T Z



=





1 3

2 3

• Incorporated into backtracking search

• Constraint programming languages powerful

approach for modeling and solving combinatorial

optimization problems.

Arc-consistency

ICS-271:Notes 5: 40

Arc-consistency algorithm

domain of X domain of Y

Arc is arc-consistent if for any value of there exist a matching value of

Algorithm Revise makes an arc consistent

Begin

1. For each a in Di if there is no value b in Dj that is consistent with a then delete a

from the Di.

End.

Revise is , k is the number of values in each domain.

)(ji ,XX
iX

iX

)(ji ,XX

)O(k 2

ICS-271:Notes 5: 41

Algorithm AC-3

• Begin

– 1. Q <--- put all arcs in the queue in both directions

– 2. While Q is not empty do,

– 3. Select and delete an arc from the queue Q

• 4. Revise

• 5. If Revise changes (reduces) the domain of Xi then add to the

queue all arcs that go to Xi ((Xl,Xi for all l except i).

– 6. end-while

• End

• Complexity:

– Processing an arc requires O(k^2) steps

– There is edges

– The number of times each arc can be processed is 2·k

– Total complexity is

)(ji ,XX

)(ji ,XX

)O(ek 3

e

ICS-271:Notes 5: 42

Sudoku

Each row, column and major block must be all different

“Well posed” if it has unique solution: 27 constraints

2 3
4 62

Constraint
propagation

•Variables: 81 slots

•Domains =
{1,2,3,4,5,6,7,8,9}

•Constraints:
•27 not-equal

ICS-271:Notes 5: 43

Sudoku

Each row, column and major block must be all different

“Well posed” if it has unique solution

Path-consistency or

3-consistency

4-consistency and

i-consistency in geeral

ICS-271:Notes 5: 44

The Effect of Consistency Level

• After arc(2)-consistency z=5 and l=5 are

removed

• After path(3)-consistency

– R’_zx

– R’_zy

– R’_zl

– R’_xy

– R’_xl

– R’_yl

Tighter networks yield smaller search spaces

ICS-271:Notes 5: 45

• Before search: (reducing the search space)

– Arc-consistency, path-consistency, k-consistency

– Variable ordering (fixed)

• During search:

– Look-ahead schemes:

• Variable ordering (Choose the most constraining variable)

• Value ordering (Choose the least restricting value)

– Look-back schemes:

• Backjumping

• Constraint recording

• Dependency-directed backtracking

Improving Backtracking O(exp(n))

ICS-271:Notes 5: 46

ICS-271:Notes 5: 47

Look-ahead: Variable and value orderings

• Intuition:

– Choose a variable that will detect failures early

– Choose a value least likely to yield a dead-end

– Approach: apply propagation at each node in the search tree

• Forward-checking

– Check each unassigned variable separately

• Maintaining arc-consistency (MAC)

– Apply full arc-consistency

ICS-271:Notes 5: 48

ICS-271:Notes 5: 49

ICS-271:Notes 5: 50

ICS-271:Notes 5: 51

ICS-271:Notes 5: 52

ICS-271:Notes 5: 53

ICS-271:Notes 5: 54

ICS-271:Notes 5: 55

ICS-271:Notes 5: 60

ICS-271:Notes 5: 62

Summary so far

• Constraint Satisfaction Problems

– variables, domains, constraints

– solution = assignment to all variables such that all constraints are satisfied

– constraint graph

• Search vs Inference:

– conditioning vs local consistency.

• Search

– In the space of partial assignments; add var=val at each search space node.

– Effect on search space size on var/val order :

• Variable order – most constrained variable first

• Value order – least constraining value first

• Inference (local consistency)

– Prune domains/constraints

– Arc/path/k-consistency

• Combining search and local consistency to improve efficiency

– Forward checking (FC)

– Maintaining Arc Consistency (MAC)

ICS-271:Notes 5: 63

Forward-checking on Graph-coloring

)(2ekO

)(

)(

3

2

ekO

ekOFW overhead:

MAC overhead:

ICS-271:Notes 5: 64

Algorithm DVO (DVFC)

ICS-271:Notes 5: 65

Propositional Satisfiability

• If Alex goes, then Becky goes:

• If Chris goes, then Alex goes:

• Query:

Is it possible that Chris goes to the party but Becky does not?

Example: party problem

) (or, BA BA 

) (or, ACA C 



e?satisfiabl

 Is

 C B, A,C B,A
theorynalpropositio

ICS-271:Notes 5: 66

Unit Propagation

• Arc-consistency for CNFs.

• Involve a single clause and a single literal

• Example:

• Formula:

– C must be true

– A must be true

– B must be false and true

– formula is not satisfiable

AA ,)( CC

 C B, A,C B,A

ICS-271:Notes 5: 67

Look-ahead for SAT
(Davis-Putnam, Logeman and Laveland, 1962)

ICS-271:Notes 5: 68

Look-ahead for SAT: DPLL

Only enclosed area will be explored with unit-propagation

Backtracking look-ahead with

Unit propagation=

Generalized arc-consistency

(Davis-Putnam, Logeman and Laveland, 1962)

example: (┐A V B) ˄ (┐C V A) ˄ (A V B V D) ˄ (C)

ICS-271:Notes 5: 70

Look-back:
Backjumping / Learning

• Backjumping:

– In deadends, go back to the most recent culprit.

• Learning:

– constraint-recording, no-good recording.

– good-recording

ICS-271:Notes 5: 72

Backjumping

• (X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b})

• (r,b,b,b,g,r) conflict set of x7

– Conflict set : a partial assignment that cannot be extended
to the next variable

• (r,-,b,b,g,-) c.s. of x7

• (r,-,b,-,-,-,-) minimal conflict-set

• Leaf deadend: (r,b,b,b,g,r)

– No-good : a partial assignment that cannot be extended to
a solution

– No-good = internal deadend

• Every conflict-set is a no-good

– But not other way around (x1=r is a no-good)

?

ICS-271:Notes 5: 74

ICS-271:Notes 5: 75

ICS-271:Notes 5: 76

ICS-271:Notes 5: 77

4. Arc-consistency in tree-structured CSPs makes search backtrack-free

ICS-271:Notes 5: 78

ICS-271:Notes 5: 79

The cycle-cutset method

• An instantiation can be viewed as blocking cycles in the graph

• Given an instantiation to a set of variables that cut all cycles (a

cycle-cutset) the rest of the problem can be solved in linear time by

a tree algorithm.

• Complexity (n number of variables, k the domain size and C the

cycle-cutset size):

)(2knkO C

ICS-271:Notes 5: 80

Tree Decomposition

T

WA

NT

SA

NT

SA

Q

SA

Q

NSW

SA NSW

V

Complexity is O(n exp(w)) where w bounds

the number of variables in a cluster. Known

as the treewidth.

ICS-271:Notes 5: 81

Local Search for CSPs

• Local Search

• Works with complete variable assignments (called a state)

• Has a cost function associated with each state

• E.g. min-conflicts – number of constraints violated

• Considers only immediate neighborhood for next state

• E.g. change the value of one variable

• Operators

• Greedy heuristic : pick a value for a variable that leads to

greatest reduction in total cost – can get stuck in local optima

• Random moves : occasionally make a random move

• Sideways moves, re-starts, constraint re-weighting, …

• Incomplete

• Often fast

• orders of magnitude faster than systematic e.g. DFS

ICS-271:Notes 5: 83

ICS-271:Notes 5: 84

GSAT – local search for SAT
(Selman, Levesque and Mitchell, 1992)

1. For i=1 to MaxTries

2. Select a random assignment A

3. For j=1 to MaxFlips

4. if A satisfies all constraints, return A

5. else flip a variable to maximize the score

6. (number of satisfied constraints; if no variable

7. assignment increases the score, flip at random)

8. end

9. end

Greatly improves hill-climbing by adding

restarts and sideway moves

ICS-271:Notes 5: 85

WalkSAT
(Selman, Kautz and Cohen, 1994)

With probability p

random walk – flip a variable in some unsatisfied constraint

With probability 1-p

perform a hill-climbing step

Adds random walk to GSAT:

Randomized hill-climbing often solves
large and hard satisfiable problems

ICS-271:Notes 5: 86

More Stochastic Search:

Simulated Annealing, Constraint Reweighting

• Simulated annealing:

– A method for overcoming local minimas

– Allows bad moves with some probability:

• With some probability related to a temperature parameter T the

next move is picked randomly.

– Theoretically, with a slow enough cooling schedule, this algorithm

will find the optimal solution. But so will searching randomly.

• Breakout method (Morris, 1990): adjust the weights of the violated

constraints

ICS-271:Notes 5: 87

Problem Hardness

ICS-271:Notes 5: 88

ICS-271:Notes 5: 89

Game of Mastermind

